7 research outputs found

    A Metabolite Specific 3D Stack-of-Spiral bSSFP Sequence for Improved Lactate Imaging in Hyperpolarized [1-13^{13}C]Pyruvate Studies on a 3T Clinical Scanner

    Full text link
    Purpose: The balanced steady-state free precession sequence has been previously explored to improve the efficient use of non-recoverable hyperpolarized 13^{13}C magnetization, but suffers from poor spectral selectivity and long acquisition time. The purpose of this study was to develop a novel metabolite-specific 3D bSSFP ("MS-3DSSFP") sequence with stack-of-spiral readouts for improved lactate imaging in hyperpolarized [1-13^{13}C]pyruvate studies on a clinical 3T scanner. Methods: Simulations were performed to evaluate the spectral response of the MS-3DSSFP sequence. Thermal 13^{13}C phantom experiments were performed to validate the MS-3DSSFP sequence. In vivo hyperpolarized [1-13^{13}C]pyruvate studies were performed to compare the MS-3DSSFP sequence with metabolite specific gradient echo ("MS-GRE") sequences for lactate imaging. Results: Simulations, phantom and in vivo studies demonstrate that the MS-3DSSFP sequence achieved spectrally selective excitation on lactate while minimally perturbing other metabolites. Compared with MS-GRE sequences, the MS-3DSSFP sequence showed approximately a 2.5-fold SNR improvement for lactate imaging in rat kidneys, prostate tumors in a mouse model and human kidneys. Conclusions: Improved lactate imaging using the MS-3DSSFP sequence in hyperpolarized [1-13^{13}C]pyruvate studies was demonstrated in animals and humans. The MS-3DSSFP sequence could be applied for other clinical applications such as in the brain or adapted for imaging other metabolites such as pyruvate and bicarbonate

    NMR quantification of lactate production and efflux and glutamate fractional enrichment in living human prostate biopsies cultured with [1,6‐ 13

    No full text
    PURPOSE:Image-guided prostate biopsies are routinely acquired in the diagnosis and treatment monitoring of prostate cancer, yielding useful tissue for identifying metabolic biomarkers and therapeutic targets. We developed an optimized biopsy tissue culture protocol in combination with [1,6-13 C2 ]glucose labeling and quantitative high-resolution NMR to measure glycolysis and tricarboxcylic acid (TCA) cycle activity in freshly acquired living human prostate biopsies. METHODS:We acquired 34 MRI-ultrasound fusion-guided prostate biopsies in vials on ice from 22 previously untreated patients. Within 15 min, biopsies were transferred to rotary tissue culture in 37°C prostate medium containing [1,6-13 C2 ]glucose. Following 24 h of culture, tissue lactate and glutamate pool sizes and fractional enrichments were quantified using quantitative 1 H high resolution magic angle spinning Carr-Purcell-Meiboom-Gill (CPMG) spectroscopy at 1°C with and without 13 C decoupling. Lactate effluxed from the biopsy tissue was quantified in the culture medium using quantitative solution-state high-resolution NMR. RESULTS:Lactate concentration in low-grade cancer (1.15 ± 0.78 nmol/mg) and benign (0.74 ± 0.15 nmol/mg) biopsies agreed with prior published measurements of snap-frozen biopsies. There was substantial fractional enrichment of [3-13 C]lactate (≈70%) and [4-13 C]glutamate (≈24%) in both low-grade cancer and benign biopsies. Although a significant difference in tissue [3-13 C]lactate fractional enrichment was not observed, lactate efflux was significantly higher (P < 0.05) in low-grade cancer biopsies (0.55 ± 0.14 nmol/min/mg) versus benign biopsies (0.31 ± 0.04 nmol/min/mg). CONCLUSION:A protocol was developed for quantification of lactate production-efflux and TCA cycle activity in single living human prostate biopsies, allowing metabolic labeling on a wide spectrum of human tissues (e.g., metastatic, post-non-surgical therapy) from patients not receiving surgery

    Rapid sequential injections of hyperpolarized [1-¹³C]pyruvate in vivo using a sub-kelvin, multi-sample DNP polarizer.

    No full text
    The development of hyperpolarized technology utilizing dynamic nuclear polarization (DNP) has enabled the rapid measurement of (13)C metabolism in vivo with very high SNR. However, with traditional DNP equipment, consecutive injections of a hyperpolarized compound in an animal have been subject to a practical minimum time between injections governed by the polarization build-up time, which is on the order of an hour for [1-(13)C]pyruvate. This has precluded the monitoring of metabolic changes occurring on a faster time scale. In this study, we demonstrated the ability to acquire in vivo dynamic magnetic resonance spectroscopy (MRS) and 3D magnetic resonance spectroscopic imaging (MRSI) data in normal rats with a 5 min interval between injections of hyperpolarized [1-(13)C]pyruvate using a prototype, sub-Kelvin dynamic nuclear polarizer with the capability to simultaneously polarize up to 4 samples and dissolve them in rapid succession. There were minimal perturbations in the hyperpolarized spectra as a result of the multiple injections, suggesting that such an approach would not confound the investigation of metabolism occurring on this time scale. As an initial demonstration of the application of this technology and approach for monitoring rapid changes in metabolism as a result of a physiological intervention, we investigated the pharmacodynamics of the anti-cancer agent dichloroacetate (DCA), collecting hyperpolarized data before administration of DCA, 1 min after administration, and 6 min after administration. Dramatic increases in (13)C-bicarbonate were detected just 1 min (as well as 6 min) after DCA administration
    corecore